Zur Polymerisation der Germaniumsäure, 1. Mitt.*:

Bestimmung der mittleren Ladungszahlen und mittleren Polymerisationsgrade auf Grund potentiometrischer Titrationen**

Von

J. Haas, N. Konopik, F. Mark und A. Neckel

Aus dem Institut für Physikalische Chemie der Universität Wien

Mit 5 Abbildungen

(Eingegangen am 30. April 1964)

Das Polymerisationsverhalten von Germaniumsäure in wäßr. Lösung wird mit Hilfe potentiometrischer Titrationen untersucht. Hierzu werden Germaniumsäure-Lösungen verschiedener Konzentration (0,00159 bis 0,02388 m) bei 25° C und konstanter Ionenstärke $(0,5 m \text{ resp. } 1,0 m\text{-NaClO}_4)$ titriert, wobei innerhalb einer Titration die Ge-Konzentration konstant gehalten wird.

Ein geeignetes Meß- und Auswerteverfahren erlaubt, aus den Potentialwerten Wasserstoffionen-Konzentrationen zu berechnen. Auf Grund der Meßdaten werden die Anzahl der je Ge-Atom gebundenen OH-Gruppen sowie mittlere Polymerisationsgrade bestimmt.

Einleitung

Schon frühzeitig wurde versucht, den Zustand der Germaniumsäure in Lösung aufzuklären.

Einen ersten Hinweis auf eine Polymerisation der Germaniumsäure liefert die Titration der wäßrigen Lösung mit Natronlauge. Aus der Tatsache, daß hierbei nur $^2/_5$ Äquivalente Alkali je Gramm-Atom Germanium verbraucht werden, hat *A. Tchakirian* 1928 erstmals auf die

^{*} Herrn Prof. Dr. E. Hayek zum 60. Geburtstag gewidmet.

^{**} Auszugsweise vorgetragen auf dem Chemikertreffen Schweiz-Österreich am 4. Oktober 1963 in Innsbruck. Vgl. Österr. Chemiker-Ztg. 64, 294 (1963).

Existenz einer Pentagermaniumsäure $H_2Ge_5O_{11}$ geschlossen¹. Gestützt wurde dieser Befund durch Diffusionsmessungen von *R. Schwarz* und *E. Huf*², die ein mittleres Molekulargewicht *M* von 548 erhielten $(M_{H_2Ge_5O_{11}} = 541).$

Titriert man wäßrige Germaniumsäurelösungen verschiedener Konzentration potentiometrisch mit Alkali und trägt den pH-Wert gegen die

Abb. 1. Änderung des pH-Wertes im Verlaufe der Titration von Germaniumsäure. Reproduktion aus: Bull. Soc. Chim. France 15, 631 (1948)

je Gramm-Atom Ge hinzugefügte Menge Lauge auf, so erhält man eine Kurvenschar (Abb. 1), die sich in einem Punkte schneidet. Aus der Lage des Schnittpunktes^{*}, dem Verhältnis von KOH/Ge = 0,36, also rund 0,4, leiteten A. Tchakirian und G. Carpéni 1948 erneut die Existenz einer Pentagermaniumsäure ab³. Diese Autoren waren auf Grund röntgenographischer Befunde der Ansicht, daß das aus konzentrierten Lösun-

^{*} Von G. Carpéni [C. r. hebdomad. Sé. Acad. Sci. **226**, 807 (1948)] in Analogie zum isosbestischen Punkt isohydrischer Punkt genannt.

¹ A. Tchakirian, C. r. hebdomad. Sé. Acad. Sci. 187, 229 (1928).

² R. Schwarz und E. Huf, Z. anorg. allgem. Chem. 203, 188 (1931).

³ A. Tchakirian und G. Carpéni, C. r. hebdomad. Sé. Acad. Sci. 226, 1094 (1948).

gen im pH-Bereich 8 bis 10 ausfallende Produkt Kaliumpentagermanat sei*. Hierzu muß jedoch bemerkt werden, daß der Schluß von der Zusammensetzung der festen Phase auf die in Lösung vorliegende Spezies zwar naheliegend, aber keinesfalls zwingend ist.

Mit Sicherheit geht aber aus dieser Darstellung (Abb. 1) hervor, daß Germaniumsäure polymerisiert; wäre dies nämlich nicht der Fall, dann müßten die für verschiedene Konzentrationen erhaltenen Kurven zusammenfallen. Da konzentrierte wäßrige Germaniumsäurelösungen eine normale Gefrierpunktserniedrigung aufweisen⁴, kann geschlossen werden, daß zwar die undissoziierte Säure monomer vorliegt, ihre Ionen jedoch polymerisieren.

In der Folge wurde mehrfach diskutiert, inwieweit der Schnittpunkt Bedeutung besitzt⁵. Hierbei wurde aber auf die Tatsache, daß dieser im Falle der Germaniumsäure bei 0,36 und nicht bei 0,4 auftritt (wo er liegen müßte, wenn das polymere Anion praktisch ausschließlich pentamer wäre) wenig Gewicht gelegt.

Die Frage des Polymerisationszustandes wurde durch die röntgenographischen Untersuchungen an Germanaten von H. Nowotny und A. Wittmann⁶ erneut aufgeworfen. Diese Autoren stellten fest, daß aus konzentrierten Lösungen im pH-Bereich 8 bis 10 ein Heptagermanat Me₃HGe₇O₁₆ · 4 H₂O ausfällt und sie vermuteten, daß auch in Lösung Heptagermanate vorliegen könnten^{**}. Zu dem gleichen Ergebnis kamen später auch E. R. Shaw, J. F. Corwin und J. W. Edwards⁷. Auf Grund von Ionenaustauschversuchen schlossen D. A. Everest und Mitarb.⁸, daß in wäßrigen Lösungen neben monomeren Formen Penta- und Heptagermanate vorhanden sein dürften.

Schließlich hat sich L. G. Sillén im Zuge seiner Gleichgewichtsstudien an Polyanionen mit der Germaniumsäure befaßt. So berichtete 1959

^{*} Vgl. hierzu auch G. Carpéni, Y. Hamann, J. Haladjian und G. Périnet, Bull. Soc. Chim. France **1960**, 1903; A. Piétri, J. Haladjian, G. Périnet und G. Carpéni, ibid., S. 1909; P. Papamantellos und A. Wittmann, Mh. Chem. **92**, 805 (1961).

^{**} Vgl. hierzu auch die obenstehende Fußnote*.

⁴ W. A. Roth und O. Schwartz, Ber. dt. chem. Ges. **59**, 338 (1926); P. Souchay, Bull. Soc. Chim. France **1953**, 395.

⁵ Vgl. z. B. P. Souchay und M. Teyssèdre, Bull. Soc. Chim. France **1951**. 938; J. Byé, ibid. **1953**, 390; P. Souchay, ibid. S. 395; P. Souchay und M. Teyssèdre, C. r. hebdomad. Sé. Acad. Sci. **236**, 1965 (1953); M. Lourijsen-Teyssèdre, Bull. Soc. Chim. France **1955**, 1118.

⁶ A. Wittmann und H. Nowotny, Mh. Chem. 87, 654 (1956).

⁷ E. R. Shaw, J. F. Corwin und J. W. Edwards, J. Amer. Chem. Soc. 80, 1536 (1958).

⁸ D. A. Everest und J. E. Salmon, J. Chem. Soc. [London] **1954**, 2438; D. A. Everest und J. C. Harrison, ibid. **1959**, 2178.

N. Ingri⁹, daß es infolge des begrenzten Konzentrationsbereiches nicht möglich sei, einen definierten Schluß hinsichtlich der Formel des komplexen Polyanions zu ziehen, daß aber neben den monomeren Spezies $Ge(OH)_4$, $GeO(OH)_3^-$ und $GeO_2(OH)_2^{2-}$ ein polymeres Anion mit mehr als 6 Germanium-Atomen in jedem Ion und mit einer Ladung von — 2 oder —3 vorliegen dürfte. Eine endgültige Klärung versprach man sich von Strukturuntersuchungen an Germanaten, die im Verlauf der Titration wäßriger Germaniumsäurelösungen ausfallen.

P.J. Antikainen¹⁰ stellte in seinen, durch H-Ionenaustauscher hergestellten, konzentrierten Lösungen (max. 0.23m)* einfach negativ geladene Komplexe, die 2 und 3 Ge-Atome enthalten, fest.

In diesem Stadium schien es wünschenswert, potentiometrische Titrationen hoher Präzision an Germaniumsäurelösungen verschiedener Konzentration auszuführen und eine genaue mathematische Analyse der erhaltenen Kurven vorzunehmen.

Experimenteller Teil

Apparatur. Abb. 2 zeigt die für die Titrationen verwendete Schliffapparatur aus Geräteglas, die in Anlehnung an die von L. G. Sillén¹¹ benützte Meßzelle aufgebaut wurde. T ist die eigentliche Titrationszelle, ein Gefäß mit einem mittleren Schliffansatz für einen KPG-Rührer und mit 6 weiteren, zu diesem symmetrisch angebrachten Schliffansätzen, die dem Durchleiten eines inerten Gases, dem Einsetzen der Bürette, der Elektroden sowie zur Aufnahme des Stromschlüssels St dienen. B ist die Bezugselektrode; für die Messungen bei Ionenstärke 0,50 m eine Ag/AgCl-Elektrode, bei Ionenstärke 1,0 m eine Normal-Kalomelektrode. V₁ und V₂ stellen Vorratsgefäße für Salzlösungen dar, die über den Dreiweghahn D das Herstellen einer sauberen Grenzfläche ermöglichen. Die Grenzfläche Stromschlüssel/Meßlösung konnte über den Patenthahn H erneuert werden. Die Anordnung ist, wie die Skizze in Abb. 2 unten zeigt, U-förmig abgewinkelt und, in einem Gestell hängend, zur Konstanthaltung der Temperatur in einem Thermostaten von 25 \pm 0,02° C untergebracht.

Die Ag/AgCl-Bezugselektrode. Verwendet wurden zunächst elektrolytisch nach A. S. Brown¹² angefertigte Spitzelektroden. Später wurden "Silberspiegelelektroden" nach E. L. Purlee und E. Grunwald¹³ in Blattform eingesetzt, die sich gut bewährten. Sie sind von langer Lebensdauer, zeigen keine Alterungserscheinungen und die Gleichgewichte stellen sich rasch ein.

* Durch Auflösen von GeO_2 in H_2O erhält man maximal eine etwa 0,04 m Lösung.

⁹ N. Ingri, Internat. Conf. Coordin. Chem., The Chemical Society, London **1959**, S. 188.

¹⁰ P. J. Antikainen, Suomen Kemistilehti **33B**, 38 (1960).

¹¹ W. Forsling, S. Hietanen und L. G. Sillén, Acta Chem. Scand. 6, 905 (1952).

¹² A. S. Brown, J. Amer. Chem. Soc. 56, 646 (1934).

¹³ E. L. Purlee und E. Grunwald, J. Chem. Phys. 27, 990 (1957).

Von Bedeutung für ein klagloses Funktionieren der Elektroden erwies sich allerdings die Bezugselektrodenfüllung. Bei den Versuchen mit Ionenstärke 0,5 m wurde zunächst NaClO₄-Lösung eingesetzt. Die damit erhaltenen Potentialwerte waren jedoch — offenbar wegen Spuren von Verunreinigungen im

verwendeten NaClO₄ p. a. — nicht genügend reproduzierbar. Benutzt man als Elektrodenfüllung jedoch bromidfreie 0.5 m NaCl-Lösung, so stellen sich konstante Elektrodenpotentiale ein.

Die Kalomel-Bezugselektrode. Für die erste Meßreihe (Ionenstärke I = 1, 0 m) wurde eine Normal-Kalomelelektrode als Bezugselektrode verwendet, jedoch an Stelle von KCl- mit NaCl-Lösung gefüllt. Da es nicht möglich war, die Elektrode andauernd bei 25° C aufzubewahren *, wurde für die zweite Meßreihe (I = 0,50 m) eine Ag/AgCl-Bezugselektrode (s. o.) eingesetzt.

Als Indikatorelektrode diente eine Glaselektrode der Type U der Fa. Metrohm. Die EMK-Messungen wurden mit einem Potentiometer der Type pHM4c der Fa. Radiometer ausgeführt. Die Ablesegenauig-

keit beträgt \pm 0,2 mV. Für das in diesem Meßgerät eingebaute Normalelement wird für 25° C eine EMK von 1,01842 \pm 0,01% V_{abs} angegeben. Messungen mit einem zweiten Gerät, dessen Fertigung sich um etwa ein Jahr unterschied, ergaben identische Potentialwerte.

^{*} Eine ständige Thermostatierung der Elektrode ist aber erforderlich, da sich die Gleichgewichte bei Temperaturwechsel nur langsam einstellen; vgl. hierzu auch *B. Wingfield* und *S. F. Acree*, J. Amer. Leather Chemists' Assoc. **31**, 403 (1936) [über Chem. Zbl. **1937 I**, 2221; vgl. auch ibid. **II**, 4291].

Als Spülgas wurde N_2 verwendet, der nach Passieren einer Waschflasche mit konz. H_2SO_4 mit Hilfe einer Aktivkupferkolonne von Sauerstoff befreit und vor seinem Eintritt in die Meßlösung durch Waschflaschen mit ca. *n*-NaOH und schließlich 1,0 resp. 0,5 *m*-NaClO₄-Lösung geleitet wurde.

Reagentien, Lösungen und Analysen. Alle verwendeten Reagentien waren p. a.-Präparate: GeO₂ der Fa. Schuchardt oder Fluka mit einer Reinheit von 99,999%. NaOH wurde aus Titrisollösungen von Merck bereitet. Die Germaniumsäure-Stammlösung wurde, wie bereits beschrieben¹⁴, gewonnen. Alle Lösungen wurden mit ausgekochtem, destill. Wasser, das im N₂-Strom erkalten gelassen wurde, bereitet und in Polythenflaschen aufbewahrt

Der Titer der NaOH wurde potentiometrisch mit $\text{KH}(\text{JO}_3)_2$ bestimmt. Die Analyse der Germaniumsäure-Stammlösung erfolgte nach *E. Wunderlich* und *E. Göhring*¹⁵ durch potentiometrische Titration der Brenzcatechingermaniumsäure mittels NaOH. Der Gehalt der Salzlösungen wurde durch Eindampfen bestimmter Volumina Lösung und Auswägen gefunden.

Alle Ge-Titrationen wurden bei konstanter Ionenstärke ausgeführt, um die Aktivitätskoeffizienten weitgehend konstant zu halten. Die erste Versuchsreihe wurde in m-NaClO₄ durchgeführt. Da jedoch die Löslichkeit von Germanat mit abnehmender Salzkonzentration zunimmt, wurde für die weiteren Messungen eine Konzentration von 0.5m-NaClO₄ gewählt.

Während einer Titration wurde aber auch die Gesamtgermaniumkonzentration konstant gehalten. Dies erfolgte in der Weise, daß Meßund Maßlösung gleiche Mengen Germaniumsäure-Stammlösung enthielten.

Potentialmessungen. Die in der Meßkette

Bezugs-El.* | Salzbrücke | Germanat-Lsg. | Glas-El. unter den oben angeführten Bedingungen bei 25°C in mV gemessenen Potentiale sind gegeben durch:

> $E = E_{oh} - 59,15 \log h + E_j$ bzw. $E = E_{oa} + 59,15 \log a + E_j.$

 E_{oh} bzw. E_{oa} sind — konstante Aktivitätskoeffizienten vorausgesetzt — Konstante; E_j ist das gesamte Diffusionspotential. Man erhält bei Kenntnis der Größen E_{oh} , E_{oa} und E_j , deren experimentelle Ermittlung anschließend aufgezeigt wird, aus den gemessenen Potentialwerten Wasserstoff- bzw. Hydroxylionenkonzentrationen, die hier mit h bzw. a bezeichnet sind.

Da sich selbst bei den verwendeten Ionenstärken die Anfangspotentiale der Germaniumsäurelösungen nur langsam einstellten, wurde vor Beginn

^{*} Bezugselektroden:

Ag, AgCl | 0,50 m-NaCl, gesätt. mit AgCl,

Hg, $Hg_2Cl_2 \mid 1,0 \text{ }m$ -NaCl, gesätt. mit Hg_2Cl_2 .

¹⁴ N. Konopik, Z. anal. Chem. **186**, 127 (1962).

¹⁵ E. Wunderlich und E. Göhring, Z. anal. Chem. 169, 346 (1959).

jeder Titration eine genau abgemessene Menge gestellter $HClO_4$ -Lösung zugesetzt.

Zur Bestimmung von E_{oh} bzw. E_{oa} , E_j sowie dem Ionenprodukt des Wassers K_w bei der gewählten Ionenstärke titriert man eine Säure (im vorliegenden Falle HClO₄) unter den gleichen Bedingungen wie die Meßlösung. Trägt man die Größen ($E + 59,15 \log h$) bzw. ($E - 59,15 \log a$) gegen die analytisch ermittelte H⁺- bzw. OH⁻-Ionenkonzentration auf (Abb. 3), so ergeben sich Gerade.

Das gesamte Diffusionspotential E_j setzt sich aus einem konstanten Anteil E_{kj} an der Grenzfläche Bezugselektrode/Salzbrücke (im Dreiweg-

Abb. 3. Abhängigkeit der Größen $(E_{oh}+E_j)$ bzw. $(E_{oa}+E_j)$ von der Wasserstoff- bzw. OH-Ionenkonzentration

hahn D in Abb. 2) und einem variablen Anteil E_{vj} an der Grenzfläche Salzbrücke/Meßlösung (vgl. Abb. 2) zusammen. Der variable Anteil E_{vj} wird Null für h = 0 bzw. a = 0. Durch Extrapolation auf Null erhält man die in Tab. 1 angegebenen ($E_{oh} + E_{kj}$)- bzw. ($E_{oa} + E_{kj}$)-Werte.

Aus der Steigung der Geraden (Abb. 3) bestimmt man E_{vj} , den variablen Anteil des Diffusionspotentials, als Funktion der H⁺- bzw. OH⁻-Ionenkonzentration (Tab. 1).

Tabelle 1

and the first of the second	$E_{oh} + E_{kj}$ [mV]	$\frac{E_{oa} + E_{kj}}{[mV]}$	$-\log K_w$	E_{vj} [mV]
I = 0,5 m-NaClO ₄	$-394,05 \pm 0,21$	$417,50 \pm 0,24$	13,72 \pm 0,01	117 H+—111 OH-
I = 1,0 m-NaClO ₄	369,5	445,55	13,779	58,9 H+58,9 OH-

Das Ionenprodukt des Wassers bei der gewählten Ionenstärke ist durch

$$-\log K_w = \frac{E_{oa} - E_{oh}}{59,15}$$

gegeben (Tab. 1).

J. Haas u. a.:

Kennt man die in Tab. 1 angeführten Größen, so lassen sich aus den an Meßlösungen erhaltenen Potentialwerten die Wasserstoffionen-Konzentrationen nach

$$-\log h_{0,5m \text{ NaClO}_4} = 0.0169062 \ E + 6.662 + 3.577 \cdot \frac{10^{-14}}{h} = -\log h_{1,0m \text{ NaClO}_4} = 0.0169062 \ E + 6.247 + 1.656 \cdot \frac{10^{-14}}{h}$$

berechnen. Den Hauptbeitrag liefern die beiden ersten Terme; bei großen h-Werten, d. i. im sauren und schwach alkalischen Gebiet, kann man den dritten Term vernachlässigen. Im stärker basischen Gebiet, wenn dieser Beitrag > 0,0005 wird, ist er zu berücksichtigen. In diesem Falle wird h durch ein Iterationsverfahren ermittelt.

Auswertung der Meßergebnisse

Die Kenntnis von h und K_w erlaubt die Bestimmung der freien OH-Ionenkonzentration a. Aus der Gesamtgermaniumkonzentration, der hinzugefügten Laugenmenge (korrigiert um die vor Beginn der Titration

Tabelle 2

I = 0.50 m

 $B_0 = 0,00398 m$

 $A_{0} = \frac{X \cdot 0,20034}{100 + X}$

	<i>E</i> [mV]	$- \log a$	Z
	16,7	6,776	0,025
	42,1	6,346	0,040
	56,0	6,111	0,055
	65,0	5,959	0,070
i	71,6	5,848	0,083
	77,2	5,753	0,095
	81,8	5,675	0,111
	89,7	5,542	0,136
	95,9	5,437	0,166
	101,3	5,345	0,191
	108,2	5,229	0,229
	114,1	5,129	0,274
	119,7	5,034	0,317
	126,3	4,923	0,377
	133,8	4,796	0,445
	141,0	4,674	0,513
	147,9	4,558	0,585
	155,2	4,434	0,656
	164,4	4,279	0,736
	174,9	4,101	0,817
	104,4 174,9	4,279 4,101	

Fortsetzung von Tabelle 2

X [ml]	E [mV]	$-\log a$	Z
1,83	185,0	3,930	0,874
1,94	194,0	3,778	0,915
2,06	203,9	3,611	0,955
2,17	214,05	3,438	0,980
2,29	223.05	3,286	0.997

I = 0,50 m

 $B_0 = 0,00796 m$

 $A_{\mathfrak{g}}=rac{X\cdot0,20034}{100+X}$

X [ml]	<i>E</i> [mV]	$\log a$	Ζ
0,025	— 71,0	8,258	0,006
0,05	- 2,15	7,094	0,013
0,075	23,1	6,667	0,019
0,10	36,0	6,449	0,025
0,125	45,0	6,297	0,031
0,15	51,8	6,182	0,038
0,18	57,1	6,093	0,045
0,21	61,7	6,015	0,053
0,23	65, 6	5,949	0,058
0,265	69,0	5,891	0,067
0,30	71,9	5,842	0,075
0,35	77,1	5,755	0,088
0,40	81,75	5,676	0,101
0,46	85,6	5,611	0,116
0,52	89,0	5,553	0,131
0,60	93,8	5,472	0,149
0,73	99,0	5,384	0,182
0,80	102,6	5,323	0,200
0,95	108,2	5,229	0,236
1,16	115,9	5,099	0,288
1,31	120,6	5,019	0,324
1,46	124,9	4,946	0,361
1,66	130,6	4,850	0,410
1,90	136,9	4,744	0,467
2,15	143,3	4,635	0,528
2,40	149,1	4,537	0,587
2,61	154,8	4,441	0,636
2,85	160,6	4,343	0,691
3,08	167,0	4,235	0,745
3,37	175,9	4,084	0,810
3,67	186,7	3,902	0,874
3,85	194,2	3,775	0,912
4,04	204,25	3,605	0,946
4,25	216,0	3,405	0,977
4,42	225,7	3,241	0,994

 $B_0 = 0,01194 m$

 $I = 0,50 \ m$

 $A_{\rm 0} = \frac{X \cdot 0,40068}{90 + X}$

X [ml]	<i>E</i> [mV]	$-\log a$	Z	
0,02		7,195	0,008	
0,04	27,75	6,589	0,015	
0,07	41,1	6,363	0,026	
0,10	50,3	6,208	0,037	
0,125	56,8	6,098	0,047	
0,16	61,9	6,012	0,059	
0,18	65,9	5,944	0,067	
0,20	68,3	5,903	0,075	
0,26	74,4	5,800	0,096	
0,32	79,7	5,711	0,119	
0,375	84,1	5,636	0,139	
0,46	90,9	5,521	0,171	
0,55	97,1	5,416	0,204	
0,63	103,0	5,317	0,234	
0,72	108,7	5,220	0,265	
0,81	114,05	5,130	0,298	
0,93	120,9	5,014	0,343	
1,04	127,2	4,908	0,383	
1,16	133,1	4,808	0,425	
1,31	140,0	4,691	0,480	
1,45	146,4	4,583	0,529	
1,65	154,6	4,444	0,601	
1,86	162,25	4,315	0,675	
2,07	170, 1	4,182	0,749	
2,28	178,75	4,036	0,822	
2,485	189,7	3,851	0,890	
2,65	203,0	3,626	0,941	
2,80	215,8	3,409	0,980	

Tabelle 5

 $B_0 = 0,01592 m$ $A_0 = \frac{X \cdot 0,40068}{90 + X}$

I = 0,50 m

X [ml]	<i>E</i> [mV]	log <i>a</i>	Z
0.02	74,4	8,316	0,006
0,04	8,2	6,919	0,011
0,07	28,0	6,585	0,019
0,10	37.05	6,432	0,028
0,13	45,9	6,282	0,036
0,165	49,2	6,226	0,046
0,26	57,9	6,079	0,072

 	•	•		
X [ml]	<i>E</i> [mV]	— log <i>a</i>	Ż	
0,35	64.9	5,961	0,097	
0.43	71.2	5,854	0,120	
0,52	77,1	5,755	0,144	
0,63	84,4	5,631	0,175	
0,75	92,0	5,503	0,208	
0,90	101,1	5,349	0,249	
1,03	109,7	5,203	0,284	
1,15	115,9	5,099	0,317	
1,26	122,0	4,995	0,347	
1,37	127,75	4,898	0,377	
1,60	138,25	4,721	0,438	
1,72	143,1	4,639	0, 470	
1,84	147,7	4,561	0,503	
2,01	153,95	4,455	0,547	
2,13	157,9	4,389	0,579	
2,29	163,4	4,296	0,621	
2,50	169,9	4,186	0,676	
2,74	176,5	4,074	0,739	
2,94	182,25	3,977	0,789	
3,15	188,8	3,866	0,842	
3,40	199,0	3,694	0,904	
3,55	206,25	3,570	0,938	
3,73	218,1	3,370	0,975	
3,89	231,5	3,143	0,997	

Fortsetzung von Tabelle 5

 $B_0 = 0.01990 m$

л		$X \cdot 0,40068$
A_0	===	90 + X

I = 0.50 m

X [ml]	<i>E</i> [mV]	$-\log a$	Z	
 0,02		8,985	0,005	
0,04	- 8,75	7,206	0,009	
0,07	14,6	6,811	0,016	
0,10	23,0	6,669	0,022	
0,18	35,0	6,466	0,040	
0,205	37,7	6,421	0,046	
0,30	44,6	6,304	0,067	
0,41	52,4	6,172	0,091	
0,53	59,9	6,045	0,118	
0,67	68,8	5,895	0,149	
0,84	79,25	5,718	0,186	
1,03	89,9	5,538	0,228	
1,20	99,8	5,371	0,265	
1,38	109,5	5,207	0,304	
1,57	119,5	5,038	0,345	

X [ml]	<i>E</i> [mV]	log a	Z
1,71	126,6	4,918	0,375
1,89	134,25	4,788	0,413
2,07	141,4	4,667	0,452
2,28	149,0	4,539	0,496
2,45	154,9	4,439	0,532
2,65	161,1	4,334	0,573
2,92	168,7	4,206	0,630
3,15	174,5	4,108	0,677
3,35	179,7	4,020	0,718
3,59	185,6	3,920	0.766
3,80	190,8	3,832	0.808
4.00	196,4	3,738	0.848
4,21	203,2	3,623	0.888
4,43	212.0	3,473	0.928
4,59	218,6	3.361	0.955
4.74	226.5	3.228	0.978
4,92	237.2	3.046	0.998

Fortsetzung von Tabelle 6

Tabelle 7

I = 0,50 m

 $B_0 = 0,02388 m$

 $A_{0} = \frac{X \cdot 0,39734}{90,08 + X}$

X [ml]**E** [mV] Ζ $-\log a$ 0,02 --- 152,2 9,631 0.0040,045 -- 49,0 7,886 0,008 1,8 0,077,088 0,013 0,10 8,3 6,918 0,018 0,15 17,25 6,766 0,028 0,22 22,96,671 0,041 0,3331,3 6,529 0,061 39,9 6,3830,086 0,476,194 0,123 0,67 51,1 0,86 61,7 6,015 0,157 71,0 1,04 5,858 0,190 1,22 80,6 5,695 0,222 0,276 5,418 1,52 97,0 106,2 5,2630,308 1,70 1,87 115,0 5,114 0,338 2,04 123,05 4,978 0,368 2,25 131,9 4,828 0,405 2,45139,7 4,696 0,440 2,67 147,7 4,561 0,478 2,93 155,75 4,4250,5233,20 163,0 4,302 0,569

X [ml]	<i>E</i> [mV]	$-\log a$	Z
3,50	170,5	4,175	0,619
3,80	177.8	4,052	0,670
4,10	184.2	3,944	0,720
4,38	190,8	3,832	0,765
	Tab	elle 8	
$B_0 = 0,003497 \ m$		<i>I</i>	1.00.m
${f 1}_{{f v}}=rac{X\cdot 0,20016}{98,25+X}$		1	1,00 m
<i>X</i> [ml]	<i>E</i> [mV]	$-\log a$	Z
0,06	42,9	6,807	0,034
0,09	69,8	6,352	0,051
0,11	84,1	6,110	0,063
0,14	93,1	5,958	0,080
0,17	100,2	5,838	0,100
0,195	106,0	5,740	0,114
0,22	110,8	5,700	0,137
0,28	118,7	5,525	0,163
0,33	125,2	5,415	0,191
0,39	131,0	5,317	0,226
0,45	135,8	5,236	0,258
0,52	141,9	5,133	0,298
0,60	147,8	5,033	0,343
0,68	153,0	4,945	0,392
0,77	158,0	4,861	0,443
0,86	162,8	4,780	0,492
0,97	169,1	4,673	0,554
1,09	175,3	4,568	0,621
1,20	181,8	4,458	0,684
1,31	188,7	4,342	0,738
1,45	197,9	4,186	0,812
1,59	208,6	4,005	0,883
1.71	218.7	3,835	0,935
1,81	229,6	3,650	0,972
	Tab	elle $\dot{9}$	
$B_0 = 0,006992 m$		_	
$X \cdot 0,20016$		1 =	1,00 m

98.25 + X			
X [ml]	<i>E</i> [mV]	$-\log a$	Z
0,10	30,5	7,016	0,029
0,12	53,3	6,631	0,034
0,15	66,6	6,406	0,044
0,175	75,4	6,257	0,051

X [ml]	<i>E</i> [mV]	$\log a$	Z	
0,20	82,0	6,146	0,058	
0,25	91,8	5,980	0,073	
0,31	98,9	5,860	0,090	
0,36	104,5	5,765	0,104	
0,50	115,0	5,588	0,144	
0,61	121,7	5,475	0,177	
0,76	128,8	5,354	0,221	
0,90	135,1	5,248	0,259	
1,03	140,9	5,150	0,296	
1,21	147,3	5,042	0,348	
1,49	157,2	4,874	0,426	
1,72	164,7	4,748	0,489	
2,00	172,9	4,609	0,567	
2,29	180,8	4,465	0,648	
2,51	187,2	4,367	0,708	
2,74	194,1	4,251	0,768	
3,01	204,1	4,081	0,839	
3,27	215,5	3,889	0,904	
3,47	226,5	3,703	0,948	
3,63	237,0	3,525	0,976	

Fortsetzung von Tabelle 9

Tabelle 10

- $B_0 = 0,01049 m$
- $A_{0} = rac{X \cdot 0,40032}{89,12 + X}$

I = 1,00 m

X [ml]	<i>E</i> [mV]	$\log a$	Ζ	
0,04	3,9	7,466	0,017	
0,07	54,2	6,616	0,030	
0,10	70,0	6,349	0,043	
0,13	78,5	6,205	0,055	
0,15	84,2	6,108	0,064	
0,18	88,8	6,031	0,077	
0,24	96,0	5,909	0,102	
0,30	102,1	5,806	0,128	
0,35	107,8	5,710	0,150	
0,44	115,7	5,576	0,188	
0,51	123,2	5,449	0,217	
0,60	130,3	5,329	0,255	
0,68	136,9	5,218	0,288	
0,81	145,3	5,076	0,343	
0,93	153,2	4,942	0,393	
1,04	160,8	4,813	0,438	
1,15	167,5	4,700	0,484	
1,27	173,8	4,594	0,533	
1,38	179,7	4,494	0,579	

<i>X</i> [ml]	<i>E</i> [mV]	— log <i>a</i>	Z
1,51	185,1	4,403	0,632
1,63	190,8	4,306	0,681
1,88	202,9	4,102	0,781
2,04	210,7	3,970	0,844
2,18	220,8	3,799	0,896
2,29	229,7	3,649	0,935
2,38	237,9	3,510	0,963
2,49	250,8	3,292	0,989
D 0.01000	Tab	elle 11	
$B_0 = 0,01398 m$		т	1.00
$A_{0} = \frac{X \cdot 0,40032}{89,12 + X}$		1 =	1,00 m
X [ml]	<i>E</i> [mV]	$-\log a$	Z
0,01	44,5	6,780	0,003
0,04	56,2	6,582	0,013
0,06	62,7	6,472	0,019
0,09	67,0	6,399	0,029

6,281

6,136

Fortsetzung von Tabelle 10

	,		
0,33	90,4	6,004	
0,41	97,8	5,879	
0,50	104,7	5,762	
0,58	111,8	5,642	
0,67	118,5	5,529	
0,75	124,8	5,422	
0,84	131,2	5,314	
0,92	137,0	5,216	
1,07	147,1	5,045	
* 1,20	153,0	4,945	

74,0

82,6

* Niederschlagsbildung

0,14

0,24

Tabelle 12

$B_0 = 0,01861 n$	n
--------------------	---

4	$X \cdot$	0,4	100	32
A10	 89.	12	+	X

I = 1,00 m

0,046

0,077

0,1060,1330,1590,1850,2140,2390,2680,2920,3390,380

X [ml]	<i>E</i> [mV]	$-\log a$	Z	i a fa an
0,03	— 139,7	9,894	0,007	
0,055	92,3	9,092	0.013	
0,08	20,8	7,180	0,020	
0,105	37,2	6,903	0,025	
0,13	44,0	6,788	0,031	

X [ml]	E [mV]	$\log a$	Z
0,18	52,0	6,653	0,044
0,28	60,2	6,514	0,067
0,36	67,2	6,396	0,087
0,45	73,4	6,291	0,108
0,54	79,7	6,185	0,130
0,63	85,8	6,081	0,151
0,71	91,7	5,982	0,170
0,80	97,8	5,879	0,191
0,88	103,9	5,775	0,210
0,98	109,4	5,682	0,234
1,06	115,5	5,579	0,253
1,15	121,8	5,473	0,274
1,24	127,2	5,382	0,295
1,33	133,0	5,283	0,316
* 1.45	140.0	5,165	0.344

Fortsetzung von Tabelle 12

* Niederschlagsbildung

zugesetzte Menge an $HClO_4$ -Lösung) sowie der freien OH-Ionenkonzentration läßt sich eine Größe Z errechnen, die folgendermaßen definiert ist:

$$Z = \frac{\mathrm{OH}_{\mathrm{gesamt}} - \mathrm{OH}_{\mathrm{frei}}}{\mathrm{Ge}_{\mathrm{gesamt}}} \,.$$

Z gibt daher die Zahl der pro Ge-Atom aufgenommenen OH-Gruppen bzw. die Anzahl der negativen Ladungen pro Ge-Atom an. Trägt man Z gegen — $\log h$ auf, so erhält man die in Abb. 4 und 5 wiedergegebenen Diagramme*.

Jede Kurve entspricht einer konstanten Ge-Konzentration; der untersuchte Bereich erstreckt sich für Ionenstärke 0.50 m von 0.00159 bis 0.02388 m und für Ionenstärke 1.0 m von 0.00350 bis 0.01861 m. Bei höheren Ge-Konzentrationen fällt im Verlauf der Titration bereits das Germanat aus. Diese Kurvenstücke sind in den Diagrammen nicht eingezeichnet. Alle Kurven schneiden sich nahezu in einem Punkt, der bei Z = 0.38 liegt. Die Meßdaten und die zugehörigen Z-Werte sind in den Tab. 2 bis 12 angegeben.

Bestimmung der mittleren Ladungszahlen \overline{p} und der mittleren Polymerisationsgrade \overline{q}

Die in diesen Lösungen vorliegenden Gleichgewichte können allgemein durch folgende Reaktion beschrieben werden:

$$pA + qB = A_p B_q, \tag{1}$$

^{*} Für die theoretischen Berechnungen stellt man Z zweckmäßigerweise als Funktion von log a dar.

wobei in unserem Falle A die OH-Ionen und B die undissoziierten monomeren Germaniumsäuremoleküle bedeuten. Jedes dieser Gleichgewichte ist durch eine Gleichgewichtskonstante β_{pq}

$$\beta_{pq} = \frac{[A_p B_q]}{a^p b^q} \quad (\beta_{o1} = \beta_{Io} = 1) \tag{2}$$

bestimmt. $[A_pB_q]$ ist die Konzentration jener Moleküle, die p Ligandenmoleküle, q zentrale Gruppen und eine unbestimmte Zahl von H₂O-Molekülen enthalten; b ist die Konzentration an freiem B.

Monatshefte für Chemie, Bd. 95/4-5

Die Gesamtkonzentration an A, also die hinzugefügte, analytisch bestimmte Menge an OH-Ionen, ist durch die freie OH-Ionenkonzentration a sowie durch die in den Komplexen gebundene gegeben:

Abb. 5. Die Größe Z in Abhängigkeit von — log h für Ionenstärke I = 1,00 m

Die Gesamtkonzentration an B, also an Germanium, ist durch eine analoge Gleichung festgelegt:

$$B_{0} = \sum_{p=0}^{P} \sum_{q=0}^{Q} q \beta_{pq} a^{p} b^{q*}.$$
 (4)

* Die Summation ist über alle vorkommenden Komplexzusammensetzungen p, q zu erstrecken.

Die Größe Z, die, wie erwähnt, die pro Ge-Atom gebundene Anzahl OH-Ionen angibt, kann auf Grund obiger Beziehungen geschrieben werden:

$$Z = \frac{A_0 - a}{B_0} = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} p \beta_{pq} \ a^p b^q - a}{\sum_{p=0}^{P} \sum_{q=0}^{Q} q \beta_{pq} \ a^p b^q}.$$
 (5)

Man kann nun zeigen, daß sich die experimentell nicht zugängliche Konzentration an freiem B auf Grund folgender Beziehung berechnen läßt:

$$\ln b = \ln b^{0} - \int_{\ln a^{0}}^{\ln a} \left\{ B_{0} \left(\frac{\partial Z}{\partial B_{0}} \right)_{a} + Z \right\}_{B_{0} = \text{const.}}^{d \ln a}$$
(6)

Gl. (6) kann man auf folgende Weise ableiten: Die Gesamtkonzentration B_0 ist nach Gl. (4) eine Funktion von a und b. Das totale Differential d B_0 ist daher gegeben durch:

$$d B_{0} = \left(\frac{\partial B_{0}}{\partial a}\right)_{b} d a + \left(\frac{\partial B_{0}}{\partial b}\right)_{a} d b.$$
⁽⁷⁾

Da bei konstanter Ge-Konzentration B_0 gearbeitet wird, ist d B_0 in Gl. (7) gleich Null und man erhält

$$\left(\frac{\mathrm{d}\,b}{\mathrm{d}\,a}\right)_{B_{0}} = -\frac{\left(\frac{\partial B_{0}}{\partial a}\right)_{b}}{\left(\frac{\partial B_{0}}{\partial b}\right)_{a}},\tag{8}$$

wobei

$$\left(\frac{\partial B_0}{\partial a}\right)_b = \sum_{p=0}^P \sum_{q=0}^Q pq \beta_{pq} a^{p-1} b^q \tag{9}$$

und

ist.

$$\left(\frac{\partial B_0}{\partial b}\right)_a = \sum_{p=0}^P \sum_{q=0}^Q q^2 \beta_{pq} a^p b^{q-1}$$
(10)

Einsetzen von Gl. (9) und Gl. (10) in Gl. (8) und Multiplikation mit $\frac{a}{b}$ führt zu P = Q P = Q P = Q P = Q P = Q P = Q

$$\left(\frac{\mathrm{d}\ln b}{\mathrm{d}\ln a}\right)_{B_0} = -\frac{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} pq \ \beta_{pq} \ a^p \ b^{q-1}}{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} q^2 \ \beta_{pq} \ a^p \ b^{q-1}}$$
(11)

Geht man andererseits von Z (Gl. 5) aus und differenziert Z bei konstantem a nach B_0 , so erhält man

$$\left(\frac{\partial Z}{\partial B_0}\right)_a = \frac{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} pq \ \beta_{pq} \ a^p \ b^{q-1}}{B_0} \left(\frac{\partial b}{\partial B_0}\right)_a - \frac{Z}{B_0}.$$
 (12)

Einsetzen des Ausdruckes für $\left(\frac{\partial b}{\partial B_0}\right)_a$ aus Gl. (10) und Multiplikation von Gl. (12) mit B_0 führt zu

$$\left(\frac{\partial Z}{\partial \ln B_{0}}\right)_{a} = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} pq \ \beta_{pq} \ a^{p} \ b^{q-1}}{\sum_{p=0}^{P} \sum_{q=0}^{Q} q^{2} \ \beta_{pq} \ a^{p} \ b^{q-1}} - Z.$$
(13)

Durch Einsetzen von Gl. (11) in Gl. (13) gelangt man zu

$$\left(\frac{\partial \ln b}{\partial \ln a}\right)_{B_0} = -\left\{B_0\left(\frac{\partial Z}{\partial B_0}\right)_a + Z\right|_{B_0}^*.$$
(14)

Die bei konstantem B_0 auszuführende Integration von Gl. (14) führt zu Gl. (6). Um ln *b* zu berechnen, bedarf es also der Kenntnis von $\left(\frac{\partial Z}{\partial B_0}\right)_a$. Um diese Größe zu bestimmen, bildet man für vorgegebenes *a* und benachbarte $Z(\log a)_{B_0}$ -Kurven das Verhältnis $\left(\frac{\Delta Z}{\Delta B_0}\right)_a$ und trägt es gegen die entsprechenden Mittelwerte von B_0 auf. Die so erhaltenen Punkte werden graphisch ausgeglichen. Aus diesem Auftrag entnimmt man für vorgegebenes B_0 den Wert für $\left(\frac{\Delta Z}{\Delta B_0}\right)_a$. Die Integration wird numerisch ausgeführt.

Zunächst wird näherungsweise angenommen, daß die Konzentration an freier Germaniumsäure für Z = 0 (b^0), also am Anfang der $Z(\log a)_{B_0}$ -Kurven, wo praktisch noch kein Komplex vorliegt, der Gesamtkonzentration an Germanium B_0 gleichgesetzt werden kann. Bessere Werte für b^0 erhält man, wenn im Verlauf der Rechnung ein Näherungswert für die Stabilitätskonstante β_{11} (siehe weiter unten) bestimmt worden ist.

Um die Gesamtkonzentration an Komplexmolekülen S

$$S = \sum_{p=0}^{P} \sum_{q=0}^{Q} \beta_{pq} a^{p} b^{q} - a - b$$
 (15)

^{*} Zu identischen Beziehungen gelangt $L. G. Sillén^{16}$, allerdings auf anderem Wege.

zu berechnen, kann man folgendermaßen vorgehen. Das totale Differential dS ist gegeben durch

$$dS = \left(\frac{\partial S}{\partial a}\right)_b da + \left(\frac{\partial S}{\partial b}\right)_a db, \qquad (16)$$

1161

wobei

$$\left(\frac{\partial S}{\partial a}\right)_b = \sum_{p=0}^P \sum_{q=0}^Q p \beta_{pq} a^{p-1} b^q - 1 = \frac{A_0 - a}{a}$$
(17)

und

$$\left(\frac{\partial S}{\partial b}\right)_{a} = \sum_{p=0}^{P} \sum_{q=0}^{Q} q \beta_{pq} a^{p} b^{q-1} - 1 = \frac{B_{0} - b}{b}$$
(18)

ist, so daß Gl. (16) folgende Form annimmt:

 $dS = (A_0 - a) d \ln a + (B_0 - b) d \ln b.$ (19)

Die Gesamtkonzentration an Komplexmolekülen S erhält man durch Integration

$$S = S^{0} + \int_{\ln a^{0}}^{\ln a} (A_{0} - a) \, \mathrm{d} \ln a + \int_{\ln b^{0}}^{\ln b} (B_{0} - b) \, \mathrm{d} \ln b.$$
(20)

Da entlang einer $Z(\log a)_{B_0}$ -Kurve, d. h. bei konstantem B_0 , integriert wird, ist d ln *b* nach Gl. (14) durch d ln *a* bestimmt. Die numerisch ausgeführte Integration wurde bei Z = 0 begonnen, da wiederum näherungsweise angenommen werden kann, daß für diesen Wert von *Z* die Komplexkonzentration *S* Null ist und damit auch die Integrationskonstante $S^\circ = 0$ wird.

Mit den nun bekannten Werten von a, b, A_0 , B_0 und S lassen sich nach folgenden Beziehungen Mittelwerte für die Anzahl der Ligandengruppen A pro Komplexmolekül \bar{p} und für die Anzahl der zentralen Gruppen B pro Komplexmolekül \bar{q} berechnen:

$$\bar{p} = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} p \beta_{pq} a^{p} b^{q} - a}{\sum_{p=0}^{P} \sum_{q=0}^{Q} \beta_{pq} a^{p} b^{q} - a - b} = \frac{A_{0} - a}{S}, \quad (21)$$

$$\bar{q} = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} q \beta_{pq} a^{p} b^{q} - a - b}{\sum_{p=0}^{P} \sum_{q=0}^{Q} \beta_{pq} a^{p} b^{q} - a - b} = \frac{B_{0} - b}{S}. \quad (22)$$

Eine Auswahl* der auf diese Weise berechneten \overline{p} - und \overline{q} -Werte ist in den Tab. 13 und 14 zusammengefaßt.

^{*} Vollständige Angaben in¹⁷.

$B_0 =$	0,00398	p = m	and $q = r$	$B_0 =$	0,00796	m	
$-\log h$	Z	\overline{p}	\overline{q}	$-\log h$	Z	\overline{p}	\overline{q}
6,2	0,003	1,240	1,042	6,2	0,003	1,313	1,016
,4	0,005	1,178	1,006	,4	0,005	1,213	1,003
,6	0,008	1,108	1,010	,6	0,008	1,127	1,004
.8	0,013	1,084	1,006	.8	0.013	1,094	1,003
7,0	0,018	0,946	1,004	7,0	0,018	0,952	0,999
,2	0,023	0,814	0,996	,2	0,023	0,818	1,010
.4	0,030	0,750	0,999	,4	0,030	0,752	1,023
,6	0,042	0,753	1,000	,6	0,042	0,755	1,038
,8	0,064	0,815	1,001	,8	0,064	0,819	1,052
8,0	0,094	0,843	1,003	8,0	0,094	0,851	1,079
,2	0,138	0,876	1,008	,2	0,138	0,891	1,108
,4	0,200	0,868	0,969	,4	0,200	0,932	1,123
,6	0,280	0,870	0,950	,6	0,280	0,961	1,120
,8	0,374	0,893	0,963	,8	0,374	0,974	1,101
9,0	0,489	0,927	0,967	9,0	0,480	0,977	1,063
,2	0,611	0,955	0,967	,2	0,595	0,982	1,025
,4	0,728	0,979	0,967	,4	0,700	0,978	0,999
,6	0,819	0,986	0,966	,6	0,800	0,986	0,980
,8	0,892	0,994	0,966	,8	0,876	0,987	0,968
10,0	0,946	1,001	0,966	10,0	0,933	0,988	0,960
,2	0,979	1,002	0,966	,2	0,968	0,984	0,955
,4	1,001	1,002	0,966	,4	0,992	0,982	0,952
,6	1,018	1,006	0,966	,6	1,010	0,983	0,950
,8	1,032	1,011	0,966	,8	1,024	0,987	0,949
$B_0 =$	= 0,01194	m		$B_0 =$	0,01990	m	
6,2	0,003	1,292	1,011	6,2	0,003	1,303	1,419
,4	0,005	1,204	1,008	,4	0,005	1,215	2,002
,6	0,008	1,122	1,011	,6	0,008	1,147	2,615
,8	0,013	1,091	1,005	,8	0,013	1,150	3,204
7,0	0,018	0,950	0,999	7,0	0,019	1,103	3,702
,2	0,023	0,817	1,018	,2	0,036	1,374	3,970
,4	0,030	0,754	1,086	,4	0,064	1,684	4,566
,6	0,046	0,854	1,275	,6	0,102	2,066	5,434
,8	0,073	0,948	1,452	,8	0,142	2,367	6,103
8,0	0,117	1,061	1,579	8,0	0,186	2,659	6,565
,2	0,174	1,113	1,611	,2	0,230	2,830	6,682
,4	0,234	1,095	1,585	,4	0,278	2,862	6,343
,6	0,303	1,078	1,527	,6	0,326	2,690	5,600
,8	0,374	1,043	1,439	,8	0,375	2,354	4,585
. 9,0	0,460	1,021	1,323	9,0	0,430	2,039	3,018
,2	0,562	1,005	1,190	,2	0,802	1,700	2,830
,4	0,674	0,993	1,088	,4	0,080	1,030	2,234
,0	0,779	0,979	1,009	,0	0,074	1,019	1,101
,8	0,800	0,908	0,990	,8	0,101	1,400	1,474
10,0	0,920	0,943	0,920	10,0	0,004	1 105	1,200
نگ , ۸	0,900	0,991	0,807	, ² /4	0.962	1 072	1,141
,± ß	1 005	0,924 0.922	0.893	,4	0.992	1.059	1.042
.8	1.019	0.922	0.890	.8	1.012	1,058	1,029
,0	1,010	.,	0,000	1 ,0		_,	,

Tabelle 13 \bar{p} - und \bar{q} - Werte (I = 0,50 m)

 \bar{p} -und \bar{q} -Werte (I = 1,00 m)

 $B_0 = 0,003497 m$

 $B_0 = 0,010490 m$

$\log h$	Z	\overline{p}	-q	$-\log h$	Z	\overline{p}	q
6,4	0,002	1,250	1,071	6,4	0,006	1,581	1,005
,6	0,004	1,346	0,962	,6	0,009	1,244	1,199
,8	0,007	1,276	1,042	,8	0,014	1,123	1,437
7,0	0,010	1,067	1,098	7,0	0,019	0,961	1,610
,2	0,016	1,047	1,140	,2	0,027	0,913	1,712
,4	0,026	1,052	1,146	,4	0,039	0,906	1,768
,6	0,041	1,039	1,145	,6	0,058	0,939	1,800
,8	0,065	1,043	1,133	,8	0,090	1,021	1,816
8,0	0,100	1,034	1,115	8,0	0,133	1,068	1,797
,2	0,145	1,000	1,102	.2	0,183	1,069	1,740
,4	0,203	0,971	1,086	.4	0,239	1,052	1,665
, 6	0,280	0,967	1,071	.6	0,304	1.040	1,578
,8	0,372	0,965	1,056	.8	0,372	1,016	1,480
9,0	0,486	0,985	1,039	9,0	0,454	0,993	1,343
,2	0,614	1,012	1,021	,2	0,543	0.946	1,179
,4	0,723	1,012	1,005	.4	0.640	0.897	1.026
,6	0,816	1,012	0,993	.6	0,740	0,853	0,904
,8	0,892	1,017	0,986	,8	0,832	0,813	0,813

Elimination einkerniger (mononuklearer) Spezies

Die $Z(\log a)_{B_0}$ -Kurven (Abb. 4) fallen für Ge-Konzentrationen $B_0 < 4 \text{ mMol}$ praktisch zusammen. Wie man jedoch aus Gl. (13) unmittelbar ersieht, tritt nur dann keine Aufspaltung in den $Z(\log a)_{B_0}$ -

Kurven auf [d. h. $\left(\frac{\partial Z}{\partial \ln B_0}\right)_a = 0$], wenn ausschließlich einkernige Formen vorliegen. Für $\left(\frac{\partial Z}{\partial \ln B_0}\right)_a = 0$ muß nämlich nach Gl. (13) gelten: $\frac{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} pq \beta_{pq} a^p b^q}{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} q^2 \beta_{pq} a^p b^q} = \frac{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} p \beta_{pq} a^p b^q - a}{\sum\limits_{p=0}^{P} \sum\limits_{q=0}^{Q} q \beta_{pq} a^p b^q}.$ (23)

Die Bedingung (23) kann für beliebige Werte von a und b nur dann erfüllt sein, wenn q ausschließlich die Werte q = 0 und q = 1 besitzt und Kombinationen p, 0 für $p \ge 2$ (Selbstassoziation von A) ausgeschlossen sind; d. h. wenn neben freiem A und freiem B nur einkernige Komplexe $A_p B$ vorliegen. Die Gesamtkonzentration von B, das in mononuklearen Formen vorliegt, B_1 , kann nach L. G. Sillén¹⁶ auf folgendem Wege bestimmt werden:

 B_1 ist gegeben durch

$$B_1 = b + b \sum_{p=1}^{P} \beta_{p_1} a^p = b g_1(a) .$$
(24)

Man definiert nun analog zu Gl. (5) eine Größe Z_1

$$Z_{1} = \frac{b \sum_{p=1}^{P} p \ \beta_{p_{1}} a^{p}}{B_{1}} = \frac{\sum_{p=1}^{P} p \ \beta_{p_{1}} a^{p}}{1 + \sum_{p=1}^{P} \beta_{p_{1}} a^{p}} = \frac{d \ln g_{1}}{d \ln a}.$$
 (25)

 Z_1 ist von B_0 und von *b* unabhängig und nur eine Funktion von *a*. Man kann zu seiner Bestimmung die Titrationskurven für $B_0 < 4$ mMol heranziehen. Auf Grund von Gl. (24) unter Berücksichtigung von Gl. (25) ist

$$\mathrm{d} \ln B_1 = \mathrm{d} \ln b + Z_1 \,\mathrm{d} \ln a.$$

Drückt man d $\ln b$ durch Gl. (14) aus und integriert, so erhält man

$$\ln B_{1} = \ln B_{1}^{0} + \int_{\ln a^{0}}^{\ln a} \left\{ Z_{1} - Z - \left(\frac{\partial Z}{\partial \ln B_{0}} \right)_{a} \right\}_{B_{0} = \text{const}}^{d \ln a}.$$
(27)

In vorliegendem Falle kann man die Integrationskonstante B_1^0 für Z = 0der Gesamtkonzentration B_0 gleichsetzen. Für $Z(A_0, B_0, a)$ sind in Gl. (27) die für die konstante Konzentration B_0 bestimmten Werte einzusetzen.

Eine andere Möglichkeit, die Konzentration mononuklearer Spezies zu erfassen, besteht in der Berechnung der Stabilitätskonstanten β_{11} , $\beta_{21}, \ldots, \beta_{p1}$ auf Grund von Z_1 (für das betrachtete System in dem untersuchten pH-Bereich sind nur die Komplexe AB und A_2B von Bedeutung). Bei Kenntnis von a, b, β_{11} und β_{21} kann somit B_1 bestimmt werden.

Bestimmung der Mittelwerte \bar{p}_{Poly} und \bar{q}_{Poly}

Ist B_1 bekannt, so können Mittelwerte \bar{p}_{Poly} und \bar{q}_{Poly} gebildet werden, die die Konzentrationen der einkernigen Komplexe nicht mehr enthalten und daher einen tieferen Einblick in das Polymerisationsgeschehen ermöglichen.

Die Gesamtkonzentration polymerer Komplexe ist gegeben durch.

$$S_{\text{Poly}} = \sum_{p=0}^{P} \sum_{q=0}^{Q} \beta_{pq} \ a^{p} \ b^{q} - a - b - \sum_{p=1}^{P} \beta_{p1} \ a^{p} \ b = S - B_{1} + b \ . \tag{28}$$

¹⁶ L. G. Sillén, Acta Chem. Scand. 15, 1981 (1961).

1164

H. 4-5/1964] Zur Polymerisation der Germaniumsäure

Für die Mittelwerte \bar{p}_{Poly} und \bar{q}_{Poly} erhält man:

$$\bar{p}_{Poly} = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} p \beta_{pq} a^{p} b^{q} - a - \sum_{p=1}^{P} p \beta_{p1} a^{p} b}{S_{Poly}} = \frac{B_{0}Z - B_{1}Z_{1}}{S_{Poly}}, \quad (29)$$

$$\bar{q}_{Poly} = \frac{\sum_{p=0}^{P} \sum_{q=0}^{Q} q \beta_{pq} a^{p} b^{q} - b - \sum_{p=1}^{P} \beta_{p1} a^{p} b}{S_{Poly}} = \frac{B_{0} - B_{1}}{S_{Poly}}. \quad (30)$$

Eine Auswahl¹⁷ der auf diese Weise für I = 0.50 m berechneten \bar{p}_{Poly} - und \bar{q}_{Poly} -Werte ist in Tab. 15 enthalten. Die \bar{p}_{Poly} -Werte liegen im Mittel zwischen 2 und 4, und die \bar{q}_{Poly} -Werte zwischen 4 und 10.

\mathbf{T}_{i}	аb	el	le	1	5
7,	a o	er,	6	τ	٠

 \bar{p}_{Poly} -und \bar{q}_{Poly} -Werte (I = 0.50 m)

$$B_0 = 0,01194 m$$

 $B_0 = 0,01990 \ m$

$-\log h$	Z	$\overline{p}_{\mathrm{Poly}}$	$\overline{q}_{\mathrm{Poly}}$		$\log h$	Z	_p Poly	q _{Poly}	
8,2	0,174	1,2	4,6		8,2	0,230	1,9	6,0	
,4	0,234	1,5	4,9		,4	0,278	2,6	7,6	
,6	0,303	1,8	5,2		,6	0,326	3,3	9,4	
,8	0,374	2,0	5,5		,8	0,374	3,9	10,4	
9,0	0,460	2,1	5,3		9,0	0,436	4,1	10,1	
,2	0,562	2,2	4,9		,2	0,502	3,7	8,8	
,4	0,674	2,1	4,3		,4	0,580	3,3	7,6	
,6	0,779	2,2	3,7		,6	0,674	3,0	6,2	
,8	0,860	1,9	3,0		,8	0,767	2,5	4,9	
10,0	0,920	1,6	2,6		10,0	0,852	2,1	4,0	

Alle in der Literatur diskutierten mehrkernigen Formen fallen in diese Bereiche, und nur eine genaue mathematische Analyse der Titrationskurven, die in den beiden folgenden Arbeiten vorgenommen wird, erlaubt weitergehende Aussagen.

¹⁷ J. Haas, Dissertat. Univ. Wien 1964.

1165